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Temperature Factors for Internuclear Density Units. II. 
Considerations with Respect to Experimental Accuracy 
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A simple two-parameter approximation for the vibration tensors of internuclear density units is introduced 
and numerical values are calculated. The approximation is used to estimate the errors in electron density 
distributions which are due to incorrect vibration tensors of the internuclear density units. It is concluded 
that, at the present state of experimental accuracy, the errors due to simple approximations for the temper- 
ature factors are hardly significant. 

Introduction 

In the preceding paper (Scheringer, 1977a) - hereafter 
referred to as SCHE - expressions for the temperature 
factors of internuclear density units were derived in 
the harmonic approximation. The application of these 
expressions in the experimental determination of elec- 
tron density distributions is impaired by two facts. 
Firstly, neither the temperature factors for internuclear 
density units nor the coupling tensors can be deter- 
mined by diffraction experiments. Secondly, the 
coupling tensors for the internal modes of molecules 
can only be calculated from a complete force-constant 
matrix, which is unknown in most cases. In view of 
these obstacles it is desirable to know approximate 
values for the vibration tensors of internuclear density 
units. The simplest approximation is the average of the 
vibration tensors of the adjacent nuclei. In this paper 
we establish a better approximation, and calculate the 
differences in the densities which we obtain with the 
average approximation and with our approximation. 
This difference is regarded as being representative of the 
magnitude of the errors which one encounters with the 
average approximation. We compare this difference 
(error) with the experimental errors in density distribu- 
tions, and thus obtain a clue as to what accuracy for the 
vibration tensors of internuclear density units can be 
regarded as sufficient. We restrict our analysis to molec- 
ular crystals since these, at present, are the main objects 
of electron density determinations. 

The reason why the vibration tensors of internuclear 
density units cannot be determined from X-ray data 

Since the vibration tensors of internuclear density units 
appear in the structure factor, one would assume that 
they can be determined from the X-ray data. However 
this is usually impossible, mainly because of a too high 
correlation of the vibration components with other 
parameters. The structure factor, SCHE (2.10), contains 
the product Tk(h)gk(h) of the temperature factor and the 
Fourier transform of the kth density unit. The charge 

clouds between the nuclei are usually so diffuse that 
their Fourier transform gk(h) has already disappeared 
at small values of sin 0/2; i.e. at about 0"6 ~ -  a (Fritchie, 
1966; Coppens, 1969; Scheringer, 1977b). Hence, with 
gk(h) ----- 0, Tk(h) cannot be refined with the high-angle 
data. With the low-angle data, which one is forced to 
use, very high correlations of the vibration components 
to the shape parameters of the charge clouds appear 
and prevent a simultaneous refinement of the vibration 
and shape parameters. Thus, either one can only deter- 
mine the whole product Tk(h)gk(b), or one has to keep 
the temperature factors Tk(b) constant in order to be 
able to refine the shape parameters. 

Our statement appears to contradict Hirshfeld 
(1976), who proposed the refinement of temperature 
factors and shape parameters simultaneously. How- 
ever, Hirshfeld only considers the case of refining the 
temperature factors of the atomic cores. These cores 
are rather 'hard'  and chemically constant, and their 
Fourier transforms do not disappear for sin 0/2 > 0"7. 
In this case the high-angle data can be used to refine 
temperature factors of the atomic cores, and the low- 
angle data to refine the shape parameters of the charge 
distribution. 

Obviously it is not a matter of principle that the 
temperature factors of internuclear density units cannot 
be determined from X-ray data. If we know the electron 
density distribution of a molecule exactly, and can 
introduce it into the refinement as a fixed quantity, 
then the X-ray data alone can be used to refine the 
temperature factors of all density units. This procedure 
establishes a possibility of determining the coupling 
tensors Urr' from X-ray data. These tensors are needed, 
e.g. for calculating the thermal-motion bond-length 
correction (Scheringer, 1972a). In this context, the 
internuclear density units appear to be suited to the 
investigation of the dynamic relation of adjacent nuclei. 
With small molecules whose density distributions can 
be calculated quite accurately by quantum-chemical 
methods, the two-centre orbital products can be used 
as internuclear units whose vibration tensors are 
determined from the X-ray data. 



C. SCHERINGER 431 

An approximate formula for the vibration tensors of 
internuclear density units 

A main result in SCHE was that the vibration tensors 
of internuclear density units Uk are always smaller 
than the average of the tensors Ur and Ur, of the 
adjacent nuclei. Let us denote this average by 

U M = ~ I U  1 -Jr ~2U2, (1) 

where el +c~2= 1, cf  SCHE (2.4), and we obtain the 
tensor Uk for the density unit between the nuclei 1 and 
2 by subtracting the positive definite tensor A12 from 
UM, cf  SCHE (2.13). Our approximation consists in 
introducing one, and later two, parameters K (instead 
of the six components of A12), and instead of SCHE 
(2.13) we write 

Uk=KUM, K_<I. (2) 

The main content of this section is to estimate numer- 
ical values of K for different temperatures. 

We can simplify our task at once, since a good 
approximation is known for the components of Uk in 
the direction of the bond vector d: 

K(l[d)=l, Ate(lld)=O. (3) 

(3) is established by Hirshfeld's (1976)'rigid-bond' 
criterion. (It was used by Hirshfeld to estimate the 
correctness of the refined vibration tensors.) The 
'rigid-bond' approximation means that in the direction 
d of the bond only rigid translations occur. In physical 
terms, this approximation means that the stretching 
modes of the molecules are neglected, and only the 
bending modes are taken into account. Applying (2) 
and (3), we obtain the simplification 

of the nuclei, as was done by Pawley (1971), Scheringer 
(1972b), Willis & Howard (1975). Here we try to deter- 
mine fl by analyzing the vibration tensors of crystal 
structures which have been determined at several 
temperatures. With benzene, naphthalene, and an- 
thracene at room temperature, we conclude from an 
analysis of the internal frequencies that fl should be 
larger than 0"9 for the C atoms, and fl-~ 0"9 for the H 
atoms (Scheringer, 1972b). From vibration tensors of 
cyanuric acid (Verschoor & Keulen, 1971) we conclude 
that for the transition from 300 to 100 K, the vibration 
components decrease by about a factor of three. With 
p-nitropyridine N-oxide Wang, Blessing, Ross & 
Coppens (1976) report a decrease by an average factor 
of six for the transition from 300 to 30 K. If we generalize 
these results for molecular crystals with essentially van 
der Waals binding forces and assume fl = 0.92 for T= 
300 K, then we deduce//=0"75 for 100 K, and/ /=0"5 
for 30 K. A value of abou t / /=  0"5 for 30 K can also be 
obtained by considering the large standard deviations 
in the rigid-body (TIN) analysis performed by Wang 
et al. (1976). The large contribution of internal modes 
at 30 K prevents a good fit of the TLS components to 
the observed vibration tensors and results in the large 
value of a=0.0015 A 2 for the calculated tensors. 
3a=0.0045 A 2 is already more than 50% of the 
diagonal components of the observed tensors. If we 
assume the contribution of the internal modes to be 
approximately equal to 3a, then we obtain//---0"5 for 
T - 3 0  K. 

With the external modes, KCXt< 1 arises only from 
the librations, cf  SCHE (2.13) and (4.2). For rigid-body 
translations (complete in-phase motions) we have for 
the two nuclei 1 and 2 

Uk(L d)= K(_I_ d)UM(± d), (4) 

i.e. we need only search for values of K in the directions 
perpendicular to the bond vector. 

We shall determine K(_L d) separately for the external 
and internal modes of the molecules because the two 
types of modes can be separated for most molecules to 
a good approximation, and because they depend in 
different manners on the temperature. For the internal 
modes we make the further assumption that they do 
not depend on the temperature in the range from 0 to 
300 K. Let us denote the contribution of the external 
modes to the vibration tensors by fl and with (2) we 
can write 

K = flK ext +(1 - fl)K int. (5) 

In principle, K ~x' and K int have different values for 
each nucleus and each density unit in the molecule. We 
ignore this and assume an average value, valid for all 
density units. We look for values of fl, K ext and K i"t in 
the following. 

One possibility for determining fl, which we do not 
use here, consists in determining TIN and some 
internal-mode parameters from the vibration tensors 

U 1 = U  2 = U 1 2  = U k ,  A12 = 0 ,  K = 1 ; (6) 

i.e. the librations introduce an antiphase part into the 
coupling tensors and the tensors A12. We acquire the 
magnitude of this antiphase part, and hence values for 
K ex', from refined crystal structures for which a TLS 
analysis has been made. Using SCHE (2.13) and (4.2), 
for strong librations (50 degrees 2) and a bond length 
of d =  1.3 A, we calculate values of K ex' between 0.8 
and 0.9. Since the ratio of the libration tensor L to the 
nuclear tensor U varies only slightly with variations in 
temperature, cf. the data published by Verschoor & 
Keulen (1971), Scheringer (1973), Wang et al. (1976), 
the values of K ext are essentially independent of the 
temperature. 

With the internal modes of a molecule the antiphase 
part will, as a rule, dominate. A diatomic molecule has 
only one internal mode, and it is antiphase. With an 
increasing number of atoms in the molecule, a larger 
in-phase part will be introduced. Let us consider the 
cases of complete antiphase motion and equal in-phase 
and antiphase motion (uncorrelated motion), since 
these are the extremes between which the sum of the 
internal modes of a molecule must be located. 
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(1) Complete antiphase motion 

U I = U 2 = U M ,  U12 = - U 1 ,  Uk=(2eI--1)2UM. (7) 

For ~1 =½, Uk is zero and thus attains its minimum 
absolute value. A density unit at the midpoint between 
two nuclei remains fully at rest. This result agrees well 
with the exact calculation (within the limits of the 
Born-Oppenheimer approximation) for the H~- ion" 
the dynamic density is found to be practically equal to 
the static density in the region between the two nuclei 
(Thomas, 1973). 

(2) Uncorrelated motion 

U12-~-O, Uk=(~2UI-I-o~2U2=UM-~lo~z(U1.-+-U2).  (8) 

For the midpoint position, el  : ~ 2 : ½ ,  we find Uk ~-- 
½UM, i.e. K=½. 

With the antiphase part dominating in the internal 
modes, we expect the values of K int to lie between 0 
and 0-5. With an increasing number of atoms in the 
molecule ,  K int will also increase. Thus, we estimate 
Kint(± d) = 0.3 for smaller molecules, and Kint(± d) = 0-4 
for larger molecules. 

We now calculate values of K from (5), and use 
KeXt=0"9, Kint=0"4, and fl=0"92, 0"75, and 0.50 for 
T=300, 100, and 30 K respectively. We obtain 
K(±d)=0"86, 0"78, and 0"65, i.e. we obtain reductions 
of the average tensor UM of 14, 22 and 35% respec- 
tively. 

Experimental data of high quality, such as those 
collected for p-nitropyridine N-oxide by Wang et al. 
(1976), will lead to standard deviations o(U,) which are 
equal to 3--4% of the diagonal components U~ i. If we 
assume the real error to be 3o-, then we obtain an error 
in the vibration tensors of 9-12% of their diagonal 
components. Hence, for room temperature, the devia- 
tion of the tensors Uk from the average tensor U~, with 
14%, is nearly significant, whereas for the two low 
temperatures the deviations with 22 and 35% respec- 
tively are highly significant. 

Vibration tensors in electron density determinations 

Here we discuss two somewhat different cases: (1) The 
refinement of electron density models, and (2) the con- 
version of quantum-chemically calculated (static) 
densities into dynamic densities. 

In the refinement of density models, incorrect 
temperature factors give rise to incorrect densities. In 
the following we shall consider the question of how 
large the errors will be in the densities, if the average 
approximation, Uk(I d) = UM(± d), i.e. K(± d) = 1, is 
used. Here we adopt the point of view that our approx- 
imation, derived in the last section, gives the correct 
order of magnitude for the vibration tensor Uk. The 
difference in the densities, obtained by using UM and 
Uk, is then regarded as the order of magnitude of the 
errors in the densities which one obtains when using 
the average tensor UM. We restrict our investigation to 

the heights of bond peaks and represent the peaks by 
Gaussian distributions (Scheringer, 1977b). The peak 
maximum which is obtained after deconvolution with 
the (too large) tensor UM is higher than that obtained 
after deconvolution with the (correct) tensor Uk. In 
the numerical calculations, we applied (3) and (4) with 
the values of t ,  K ext and K int given above. The calcula- 
tion of the peak heights is described in detail elsewhere 
(Scheringer, 1977b). For the C-C valence peaks with 
an occupation of q = 0-8 electrons the differences in the 
peak heights are in the range 0.014-0.020 e A -3. For 
the sharper peaks of deformation densities with 
q~0"2 electrons, the differences are in the range 
0.030-0.070 e A,-a. These differences vary only slightly 
with the temperature because, with increasing temper- 
ature (and increasing vibration tensors), the factor K 
also increases and so compensates for the increase of 
the vibration tensors. 

When converting quantum-chemically calculated 
densities into dynamic densities an error corre- 
sponding to the use of the average tensor can hardly 
be avoided. The reason is as follows: a large part of the 
overlap densities (about two thirds) already arises 
from the one-centre orbital products (Hase, Reitz & 
Schweig, 1976), and only the smaller part arises from 
the two-centre orbital products. Since the one-centre 
products also contribute density to the atomic cores, 
the vibration tensors of the respective nuclei are used 
for these products. Hence, the region of the bond is 
made dynamic with the average tensors to about two 
thirds, provided the correct tensors Uk are used for the 
two-centre orbital products. The error which arises is 
about two thirds of the error mentioned above, i.e. with 
deformation densities about 0-02-0.047 e A,-3 in the 
bond peaks of the static density which has been made 
dynamic. 

At present electron density distributions determined 
by experiment have, at best, standard deviations of 
about 0.02-0.05 e A-3 (Rees, 1976). With X-N maps 
one can assume that the errors are somewhat smaller 
since no model of the molecular density distribution is 
used. Thus, the errors in the X-N maps are only due 
to experimental and phase errors. The comparison of 
our approximation with the average approximation, 
K(_L d) = 1, shows that the errors in the densities due to 
the use of incorrect temperature factors are about as 
large as the experimental errors. Thus, at present, the 
average tensor UM can probably be tolerated for most 
experimental investigations. Similarly, for a com- 
parison with experimental densities, the error described 
in the conversion of quantum-chemically calculated 
densities can in most cases be tolerated. On the other 
hand, the approximation developed in this paper, 
K(II d)= 1, K(± d)=0.86, 0.78 and 0"65 for T= 300, 100, 
and 30 K respectively, is certainly better than the 
average approximation, and its application is com- 
paratively easy. With more exact diffraction data, 
however, one will be forced to determine more exact 
temperature factors for internuclear density units. 
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Then the coupling tensors for the internal modes of the 
molecule have to be calculated from a complete force- 
constant matrix. We do not see a solution in which the 
quantum-chemically calculated static densities can 
correctly be converted to dynamic densities. 
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Molybdenum Ke X-radiation, monochromated by an NaC1 single crystal, was scattered in 1-propanol 
at -25°C. The angular distribution of the scattered X-ray intensity was determined and used for the 
calculation of the experimental pair function. On the basis of some models of the structure of liquid 1- 
propanol, the theoretical curves of pair functions were calculated and then compared to the experimental 
curve. The most probable model of the liquid is that of statistically distributed chains of 1-propanol 
molecules. Such chains are created by intermolecular bonds of the O-H-. .  O type, the length of which 
is 2.65 A. The angles between the O. . .O  bonds have a value between 100 and 110 °. In this model the 
oxygen and equivalent carbon atoms all lie in the same plane, and the carbon atoms of the individual 
molecules are in parallel planes, inclined at an angle of 80 ° to the oxygen-containing plane. The inhibited 
rotation of the (CHz)2CH3 group around the O-C(1) bond and the free rotation of the CH3 group around 
the C(2)-C(3) bond are possible. 

Introduction 

The first X-ray structural studies of aliphatic alco- 
hols were carried out by Stewart & Morrow (1927). 
Methanol was the subject of the structural studies of 
Zachariasen (1935). According to the structural model 
proposed by Zachariasen, the methanol molecules 
conglomerate into associated polymer chains by hy- 
drogen bonding. This model was later confirmed by 
Harvey (1938). Ethanol at 25°C and - 7 5 ° C  was 
also studied by Harvey (1939), while Prietzschk (1941) 
studied it in the super-cooled state at - 1 5 0 ° C .  Both 
these authors discovered the tendency of ethanol 
molecules to associate by the creation the hydrogen 
bridges of OH groups. The experimental results of 
Harvey and Prietzschk were confirmed theoretically 
by Jagodzinski (1947). The structural X-ray analysis 
of aliphatic alcohols was carried out by Ukrainian 
scientists (Golik, Skryshevskii & Adamienko, 1967; 
Golik, Skryshevskii & Ravikovich, 1954). Their studies 
confirmed the tendency of alcohol molecules to as- 
sociate at room temperature as well as the increase 
of coordination number from 3 for amyl alcohol to 
5 for decyl alcohol. 

This paper shows the results of structural studies of 
1-propanol at - 2 5 ° C .  1-propanol at room tempera- 
ture was investigated by Golik, Skryshevskii & 
Ravikovich (1954), but the plane model of the molecule 
suggested by them is not satisfactory and does not 
seem to be probable. 

For a molecular liquid the interpretation of the 
maxima of the radial distribution function of electron 
density is rather difficult because it often happens 
that several interacting atom pairs with comparable 
interatomic distances can be attributed to one maxi- 
mum. This is the reason why it is impossible to eval- 
uate the coordination number only on the basis of 
the comparison between the surface areas of the distri- 
bution curve maxima and the surface areas calculated 
theoretically. In practice the pair function method, 
which is precise and approximation-free, is applied. 

Experimental procedure 

In the X-ray study of 1-propanol Mo Ka radiation, 
monochromatized by a ground crystal monochro- 
mator  set in the primary beam, was used. Samples of 
the alcohol at - 2 5 ° C  were put into a liquid holder 

AC 33A--6" 


